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We describe a technique for the quantitative measurement of 
cell-generated forces in highly nonlinear three-dimensional 
biopolymer networks that mimic the physiological situation 
of living cells. We computed forces of MDA-MB-231 breast 
carcinoma cells from the measured network deformations 
around the cells using a finite-element approach based on a 
constitutive equation that captures the complex mechanical 
properties of diverse biopolymers such as collagen gels, 
fibrin gels and Matrigel. Our measurements show that breast 
carcinoma cells cultured in collagen gels generated nearly 
constant forces regardless of the collagen concentration and 
matrix stiffness. Furthermore, time-lapse force measurements 
showed that these cells migrated in a gliding motion with 
alternating phases of high and low contractility, elongation, 
migratory speed and persistence.

The migration of cells through the fibrous network of the extra-
cellular matrix is an integral part of many biological processes, 
including tissue morphogenesis, wound healing and cancer 
metastasis1. To migrate through the pores of the dense meshwork 
of the extracellular matrix, cells must generate considerable forces 
that are exerted on the matrix2–5. Accurate measurement of these 
traction forces is crucial for understanding the invasion of cancer 
cells or the migration of immune cells in tissue5,6.

One can estimate traction forces by culturing cells on artificial 
two-dimensional (2D) or three-dimensional (3D) substrates with 
known stiffness and measuring the substrate deformations as the 
cells adhere and migrate7–11. Present methods for traction-force 
reconstruction rely on the linear force-displacement response 
of the substrate. However, the connective tissues of most organs 
are highly nonlinear, as are reconstituted tissue equivalents such 
as collagen and fibrin gels, both of which stiffen strongly under 
shear12–14 and collapse with an abnormal apparent Poisson’s ratio 
greater than 1 when stretched15–18 (Fig. 1).

In this report we describe a method for measuring cell traction 
forces in physiologically relevant 3D biopolymer networks with 
highly nonlinear mechanical properties. With our method, we 
studied the contractility, migration and shape changes of breast 
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carcinoma cells in collagen gels with differing concentrations and 
matrix stiffness. During migration, breast carcinoma cells under-
went alternating phases of high and low contractility, elongation, 
migratory speed and persistence, all of which showed high tempo-
ral correlation. On average, these cells did not respond to higher 
matrix stiffness with greater contractility, which can be partially 
explained by impaired cell elongation in denser gels.

RESULTS
Macrorheology and constitutive equation for collagen gels
To measure 3D cell traction from the deformation of the surround-
ing collagen network matrix, we combined existing micromechan-
ical models with a continuum description: on a small spatial scale 
corresponding to a fiber segment, we considered that the local 
deformation of the fiber segment does not follow the deforma-
tion of the bulk. This so-called non-affine behavior is caused by 
fiber buckling, straightening or stretching14,19–24 and gives rise to 
a pronounced nonlinear stress-strain relationship and collapse of 
the material under uniaxial stretch (Fig. 1a,b). Beyond the length 
scale of the typical interconnection distance, however, the strain of 
the fiber approximates the macroscopic strain λ (ref. 14), depend-
ing on the orientation of the fiber and the applied deformation 
(equation (2)). We assumed that deformations become affine for 
a sufficiently large volume of material, and thus we were able to 
compute the stress-strain response by averaging the force contri-
butions of all fibers contained in such a volume12 (Fig. 1c).

The mechanical properties of collagen fibers can be described 
by a nonlinear potential function w(λ) with stiffness w″(λ) that 
exhibits three distinct regimes (equation (1)). Under compres-
sion, the fibers buckle, and the stiffness falls exponentially with 
a characteristic strain scale d0. For small extensions, the fibers 
have a constant stiffness κ0. If the fibers are stretched beyond 
the linear strain range λs, the stiffness increases exponentially 
with a characteristic strain scale ds (Fig. 1e). By averaging the 
stress contributions of many fibers12, assuming an isotropic and 
homogeneous distribution (Supplementary Notes 1–3), one can 
derive a constitutive equation (equation (3)) that describes the 
mechanical behavior of the bulk material.
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We determined the four parameters of our constitutive equation 
(d0, κ0, λs and ds) by means of two types of experiments. First, we 
measured the stress-strain relationship for simple shear deforma-
tion in a cone-plate rheometer (Fig. 1a). We found a linear regime 
followed by pronounced strain stiffening beyond a shear of ~3% 
that was well described by an exponential behavior13,16,21. Second, 
we measured the vertical (z) contraction of collagen gel when it 
was uniaxially stretched in the x-direction while the strain in the 
y-direction was fixed at 0% (Fig. 1b). Collagen gels exhibited  
strong vertical contraction under stretch, with a horizontal-
to-vertical stretch ratio of ~8 (Fig. 1b), indicating an apparent 
Poisson’s ratio considerably greater than 1. Additionally, we  
measured the horizontal gel dilation under uniaxial compression. 
The gel expanded only weakly in the vertical direction, revealing 
the fundamental asymmetry of the material resulting from fiber 
buckling (Fig. 1b).

Our material model (equation (3)) reproduced our experimen-
tal data (the strain stiffening, the high apparent Poisson’s ratio 
and the stretch-versus-compression asymmetry) well up to 30% 
of compression, 30% of shear and 7% of uniaxial stretch (Fig. 1).  
Moreover, measurements of collagen gels with different con-
centrations (0.6, 1.2 and 2.4 mg ml−1), fibrin gels and Matrigel 
showed that our material model captured the rheology of these 
biopolymer networks (Supplementary Notes 4–8).

This constitutive equation allowed us to compute the gel defor-
mations and stress in response to arbitrary forces, geometries and 
boundary conditions using a finite-element approach. For finite-
element analysis, we represented the geometry of the gel with a 
mechanically coupled mesh of simple tetrahedra (Supplementary 
Note 2). Our analysis showed that collagen gels stiffened strongly 
under dilating forces of cells, resulting in steric hindrance against 
migration (Supplementary Note 9). In contrast, gel stiffening 
was weak with contracting cell forces. This mechanical behavior 
of collagen gels led to more efficient migration for elongated cells 
with polarized tractions (Supplementary Note 9).

Experimental validation with point-like forces
To experimentally test the validity of the material model in com-
bination with the finite-element approach, we applied forces of 
10–30 nN using 5-µm magnetic beads attached to the surface 
of a collagen gel in a magnetic-tweezers setup (Fig. 2a,b). We 
measured the resulting local gel displacement by tracking fluo-
rescent marker beads in the gel (Fig. 2c). Time-lapse recordings 

of the matrix response showed predominantly elastic behavior 
with negligible viscosity and plasticity (Fig. 2 and Supplementary 
Note 10). We then predicted the local gel displacement from the 
known magnetic forces and the mechanical parameters of the 
gel as measured with an extensional rheometer (Fig. 2f–h and 
Supplementary Note 5). The predicted displacement field over-
estimated the maximum displacement near the bead but was in 
good agreement with measurements at distances of more than  
50 µm from the point of force application (Fig. 2g). In particular, 
our measurements confirmed the model prediction of a highly 
asymmetric displacement field. We found that the gel deformed 
strongly under tension (Fig. 2) but not under compression, as 
compressive stresses propagated poorly owing to fiber buckling. 
By contrast, the displacement field in a linear material (Fig. 2h) 
was centered on the external force.

In a second test, we reconstructed the applied point-like force 
of the magnetic bead from the measured collagen displacement 
field. We minimized the mismatch between the simulated and 
the measured local gel displacement by adjusting the position, 
direction and magnitude of the simulated force. The fitted force 
position, on average, coincided precisely with the centroid of the 
measured bead position, with an s.d. of 4 µm for different meas-
urements (Fig. 2d). The fitted force amplitude was on average 
22% higher than the applied magnetic force, with an s.d. of 33% 
for different measurements (Fig. 2e).

Unconstrained 3D force reconstruction
In contrast to the point-like force on a magnetic bead, the 
spatial distribution of forces around living cells is unknown. 
Unconstrained force reconstruction does not rely on cell-surface 
information and makes no prior assumptions about the 3D force 
field of the cell. This creates a computational problem, as the 
number of fit parameters (force vectors) is the same as the number 
of measured data points (displacement vectors). To prevent over-
fitting, we introduced a regularization approach that allowed cell 
forces to be present only in a portion of the measured volume. 
Each node of the finite-element mesh was assigned a weight 
with which external forces at that node were penalized. When 
the penalty was iteratively lowered for nodes with high forces, 
the prevailing cell forces condensed onto a few nodes, and small 
forces due to uncorrelated measurement noise were minimized 
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Figure 1 | Macrorheology of collagen type I gels and semi-affine model 
description. (a) Shear stress versus shear strain of a 2.4–mg ml−1 collagen 
gel measured in a cone-plate rheometer (representative of n = 5).  
Lin. mat., predictions from a linear material model; Col. const.  
eq., predictions from a constitutive equation for collagen gels.  
(b) Vertical contraction and expansion of a 2.4–mg ml−1 collagen gel 
under uniaxial compression and stretch. Lines color-coded according 
to the key in a. (c) Non-affine deformations (stretch and compression) 
of individual collagen fibers, depending on their orientation. (d) Fiber 
buckling under compressional strain (λ < 0), fiber straightening under 
small extensional strain (0 < λ < λs) and fiber stretching under large 
extensional strain (λs< λ). (e) Fiber stiffness versus fiber strain (w″(λ)) 
for the same regimes shown in d, characterized by an exponential 
decrease with a characteristic strain scale d0 for buckling, a constant 
stiffness κ0 for small extensional strain and an exponential increase  
with a characteristic strain scale ds for large extensional strain.
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in the rest of the volume. The strength of the regularization was 
controlled by the parameter α. By running unconstrained force 
reconstruction on the above-described data set of matrix displace-
ments around a point-like force, we found that the total force (the 
vector sum of all forces around the magnetic bead) depended little 
on α for values less than 0.3 pN2 µm−2 (Supplementary Note 11). 
The systematic force error was less than 1% with an s.d. of 30% 
between individual measurements. When averaged over many 
beads, however, the reconstructed forces appeared blurred and 
were systematically shifted 30 µm away from the direction of force 
application (Discussion).

Traction forces of living cells
To measure the force-induced deformation of a collagen gel, 
we imaged the collagen network around the cells with confocal  

reflection microscopy before and after force relaxation with 
cytochalasin D and evaluated the local displacement field via 3D 
particle image velocimetry (Fig. 3 and Supplementary Note 12). 
Unconstrained reconstructed cellular forces were localized near 
but not exactly on the surfaces of cells (Fig. 3b,c). To quantify 
this error, we projected the cellular force together with brightfield 
images of a given cell onto the x-y plane and plotted the average 
force density versus the distance to the cell edge. Forces were 
systematically shifted away from the cell edge by approximately 
18 µm (Fig. 3f) (see Discussion).

In addition to cell forces, our model allowed us to compute  
the principal matrix stress (Fig. 3d) and the principal matrix  
stiffness (Fig. 3e). Both tended toward zero in the region of  
the cell where the material was compressed and the fibers  
buckled, in essence creating a hole where the contracting  

cell was located. This suggests that cell 
forces are used almost exclusively to pull 
collagen fibers centripetally toward the 
cell. Therefore, our approach describ-
ing cellular forces as a 3D force field in a  
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Figure 2 | Experimental validation of the  
constitutive equation for collagen gels.  
(a) Image recordings (representative of  
13 measurements) of the magnetic bead,  
small fiducial marker beads and the magnetic 
needle tip during force application at  
different time points (in green) overlaid with  
an image of the unstrained configuration  
(in magenta). Colors from fiducial markers  
that did not move grade to black. Scale bar, 
20 µm. (b) Brightfield image of the magnetic-
tweezers experiment. The dashed circle  
corresponds to the dashed circle in d.  
(c) Overlay of fluorescent images of the  
marker beads before (cyan) and after (red)  
a force of 20 nN was applied to the beads.  
Red arrow indicates the direction of the  
applied force as in b. (d) Reconstructed  
forces (position, direction and magnitude) 
of magnetic beads from 13 independent 
measurements. The length of the lines is normalized to the magnitude of the known applied force (red). The dashed circle corresponds to the dashed 
circle in b. (e) Reconstructed force magnitude versus applied force magnitude. Horizontal error bars indicate the error (r.m.s.) in the applied force due to 
variations in bead size. (f) Simulated displacement around a point-like force of 20 nN. Col. gel., collagen gel. (g) Measured displacement around a  
point-like force of 20 nN averaged (avg.) over 13 measurements. Inset shows the local matrix displacements (Displ.) along the x-axis through the point 
of force application (at x = 0). Simulated displacements are shown in blue, individual measurements from different beads are in gray, and the average  
is in red. Pos., position. (h) Simulated displacements around a point-like force of 20 nN for a linear material (lin. mat.).

Figure 3 | Reconstruction of cellular forces 
inside a 1.2–mg ml−1 collagen gel. (a) Measured 
displacements around a single MDA-MB-231  
breast carcinoma cell. (b) Regularized 
displacement field around the cell in a.  
(c) Force density around the cell in a and b as 
calculated from the regularized displacements 
shown in b. (d) Principal matrix stress as 
calculated from the regularized displacement 
field. (e) Principal matrix stiffness as calculated 
from the regularized displacement field.  
(f) Reconstructed force density in arbitrary 
units (a.u.) around individual cells (n = 12;  
gray curves) as a function of the distance to  
the cell edge as illustrated in the inset.  
The average force density is shown in red.Distance to cell edge (µm)
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continuous material, without a ‘hole’ to accommodate the cell, 
does not lead to force overestimation11.

As a measure of cell contractility, we quantified the total  
magnitude of the projected force vectors pointing toward the  
cell center (Supplementary Note 13). From a data set of 63 MDA-
MB-231 cells in a 1.2–mg ml−1 collagen gel, we measured a total 
contractility of 47.6 ± 3.4 nN (geometric mean ± s.e.m.). The total 
contractility for the same cell line grown on a planar collagen-
coated polyacrylamide substrate (Young’s modulus: 5 kPa) has 
been reported25,26 as ~270 nN.

To quantify the geometry of the 3D cellular force fields, we 
decomposed the contractile force into force contributions from 
three principal components of an orthogonal coordinate system 
aligned with the force field of the cell (Supplementary Note 13). 
For a force dipole, the force polarity approaches 1, whereas for an 
isotropic force field, the force polarity approaches 1/3. The force 
polarity of MDA-MB-231 cells was 0.47 ± 0.01 (mean ± s.e.m.,  
n = 63), indicating that about half of the total contractility could 
be expressed by a single force dipole.

Contractile cell forces contribute to the strain stiffening of a 
collagen matrix surrounding cells. To quantify this, we computed 
for every cell the mechanical work needed to achieve a small  
additional matrix deformation. MDA-MB-231 cells stiffened the 
bulk of the collagen gel on average by 3.2% ± 0.5% (mean ± s.e.m.), 
in agreement with numerical simulations that also indicated  
little strain stiffening of the bulk of the collagen matrix around 
contractile cells (Supplementary Note 9). In contrast, the  
collagen matrix showed a pronounced stiffening response to  
dilatational forces that occur when a cell is attempting to squeeze 
through a narrow pore (Supplementary Note 9).

Constrained 3D force reconstruction
Unconstrained force reconstruction can robustly resolve total cell 
contractility down to 5 nN for displacement noise levels in excess of 
200 nm, but the method has limited localization accuracy (Fig. 3f  

and Supplementary Notes 14–17). To avoid the systematic  
shift and blurring of the reconstructed forces, one can constrain 
their localization to the cell surface. To demonstrate this, we  
fluorescently stained the cytoplasm of HT1080 fibrosarcoma 
cells, imaged the cells with confocal microscopy, and segmented 
them by thresholding. We assigned a zero-penalty weight to 
nodes of finite elements with a distance to the cell surface of less 
than half the mesh size; the remaining computation was identi-
cal to the unconstrained method. The force localization of the 
constrained method was superior to that of the unconstrained 
method (Supplementary Note 18), but both methods gave similar 
values for the total contractility and force polarity.

Traction forces in gels of varying collagen concentration
To study how cells respond to changes in matrix stiffness and density, 
we measured traction forces of MDA-MB-231 cells embedded in 
collagen gels with different concentrations (0.6 (n = 48), 1.2 (n = 63)  
and 2.4 mg ml−1 (n = 64)) where the linear stiffness increased 
from 44 Pa to 513 Pa and the average pore diameter decreased 
from 5.6 µm to 3.0 µm (Fig. 4a–c)27. Fluorescent staining of the 
actin cytoskeleton showed that cells in the denser gels were more 
rounded and had smaller and thinner protrusions than cells in 
gels with lower collagen concentrations (Fig. 4d–f). However, 
the projected cell area in these different gels, and therefore the 
cell volume, was the same. Matrix deformations induced by the 
cells decreased with increasing collagen concentration (Fig. 4g–i),  
but the total cell contractility, measured using unconstrained  
force reconstruction, remained the same, as did the force polarity 
(Fig. 4j–l and Supplementary Note 19).

Time-lapse force microscopy
Reflection microscopy minimizes photodamage and allows for 
long-term measurements (>24 h) of migration trajectories, cell mor-
phology and traction forces (Supplementary Videos 1 and 2). To 
investigate the coordination of traction forces during cell migration  
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Figure 4 | Contractility of MDA-MB-231 cells  
in gels with different collagen concentrations.  
(a) Collagen fiber network imaged using  
confocal reflection microscopy. (b,c) Linear  
Young’s modulus of collagen gels (b) and  
pore diameter of the network (c).  
(d) Morphology of cells (actin in red, chromatin 
in green) embedded in collagen gel. (e,f) Cell 
elongation (e) and elongation of the nucleus 
(f) in cells embedded in collagen gel. (g) 3D  
matrix displacement fields of the collagen 
gel around embedded cells. Density and hue 
of marks indicate the magnitude of the local 
displacement vector. (h) Maximum cell-induced 
matrix displacement (Max. displ.). (i) Projected 
area of cells embedded in collagen gel. (j) 3D  
force density of cells embedded in collagen  
gels. Density and color intensity of marks are 
proportional to the local force density. Scale  
bars in g,j, 50 µm. (k,l) Total contractility (k)  
and force polarity (l) of cells in collagen gel. 
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the whiskers extend to the most extreme data points not considered outliers, and outliers are plotted individually (red crosses). Notches indicate s.e.  
*P ≤ 0.05, Student’s t-test assuming unequal variances including the outliers. Col. con., collagen concentration; n.s., not significant (P > 0.05).
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through a disordered 3D collagen matrix, we simultaneously meas-
ured the time course of contractility, cell elongation, migration per-
sistence p and migration activity a (calculated from the momentary 
cell speed v according to a = v(1 − p2)0.5 (Fig. 5a,b)28. We found 
that for MDA-MB-231 cells, all four parameters were significantly 
correlated for time lags between 0 and ±15 min (Fig. 5c–f and 
Supplementary Note 20). This implies that phases of rapid cell 
movements with high persistence and activity were accompanied by 
large contractile forces and pronounced cell elongation. Conversely, 
phases during which the cells remained stationary were accompa-
nied by small contractile forces and more rounded cell shapes. For lag 
times greater than ±1 h, the correlations between these parameters 
were negative, implying that migratory phases lasted for approxi-
mately 1 h. Moreover, phases of high contractility were accompanied 
by further cell lengthening (Supplementary Note 20).

DISCUSSION
Our underlying assumption of the biopolymer network as  
a mechanical continuum is violated at the scale of individual  
fibers or single network pores. Therefore, the spatial resolution  
of the reconstructed forces is limited by the length scale at 
which the continuum assumption breaks down. Accordingly, we 
attribute the variability and positional errors in reconstructed 
forces in the magnetic bead experiments (Fig. 2g) to local hetero-
geneity in the fiber structure of the gels (density, fiber orientation, 
fiber thickness and connectivity) as described previously29. The  
spatial resolution of the reconstructed force is therefore limited 
to around 30 µm (Supplementary Note 11). Further, blurring of  
the reconstructed forces is caused by the size of the finite ele-
ments, the presence of measurement noise and the necessary 
regularization (Supplementary Note 14). Finally, collagen  
fibers under compression can bear only little mechanical stress, 
and therefore all discrepancies between the continuum model 
and the real situation of an inhomogeneous collagen gel must be 
reconciled by forces that arise in the tensed region of the collagen 
gel. If confocal image stacks of fluorescently labeled cells are avail-
able, one can avoid this problem by restricting the reconstructed 
forces to the cell surface (Supplementary Note 18).

Our statistical force fluctuations of 30% due to measurement 
errors are considerably smaller than the >50% fluctuations in 
the total force magnitude between individual cells (Fig. 4k). 
Therefore, our measurement error does not markedly degrade the 
quality of the data or require the measurement of a considerably 
larger number of cells for statistical significance. Table 1 sum-
marizes the sensitivity, accuracy and spatial resolution of the con-
strained and unconstrained 3D force reconstruction methods.

Our finding of constant traction forces for collagen gels of dif-
ferent densities and stiffness is in contrast to cell behavior on 
planar substrates, where cell tractions increase with higher sub-
strate stiffness and with increasing ligand density30–32. A possi-
ble explanation that reconciles these conflicting findings is that 
a smaller pore size in the denser and stiffer 3D matrices may 
impede cell elongation and the formation of cell protrusions, and 
hence may reduce force generation. In support of this hypothesis,  
we found that the contractility of a subpopulation of elongated cells 
with an aspect ratio greater than 2.0 was significantly (P < 0.05,  
Student’s two-tailed t-test assuming unequal variances) greater 
in 1.2 mg ml−1 collagen gels than in 0.6 mg ml−1 collagen gels 
(Supplementary Note 21).

Our method can be used to study the dynamics of cell migra-
tion in a 3D environment. We noted that untreated MDA-MB-231 
cells alternated between highly migratory and more stationary 
phases. During migratory phases cells had an elongated shape 
and high contractility. The cross-correlation between these 
parameters was highest for a time lag of zero. Thus we found 
no evidence that phases of elongation, contraction and motility  
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Figure 5 | Time-lapse force microscopy of a breast carcinoma cell inside 
collagen gel. (a) Time course of contractility, elongation, migratory 
activity and migratory persistence of an MDA-MB-231 breast carcinoma 
cell embedded in a 3D collagen gel (1.2 mg ml−1). (b) Force field of 
the cell shown in a. (c–f) Cross-correlation of force fluctuations, cell 
morphology and migration parameters for different time lags averaged 
over 20 cells. (c) Contractility versus elongation. (d) Activity versus 
elongation. (e) Elongation versus persistence. (f) Contractility versus 
persistence. Shaded area around curves indicates ±1 s.e.

Table 1 | Sensitivity, accuracy (error) and spatial resolution  
of 3D force reconstruction

Unconstrained Constrained

Sensitivity 5 nNa 5 nNa

Error (relative bias ± s.d.) <1% ± 30%b +22% ± 33%b

Spatial resolution (bias ± s.d.)   30 µm ± 30 µmb,c   0 µm ± 4 µmb

aFor a 384-Pa (Young’s modulus) collagen gel and 60-nm spatial resolution of local gel  
displacement. bFor a point force of 10–30 nN. cSpatial bias is in the force direction.
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are shifted relative to one another, as one would expect with an 
‘inchworm’ type of motion in which contraction leads to cell 
shortening and force relaxation leads to cell lengthening. Rather, 
during the migratory phases, MDA-MB-231 cells seemed to glide 
through the gel in a steady process of simultaneous adhesion  
and de-adhesion.

These results demonstrate that our 3D traction force microscopy 
method can contribute to understanding of the physical mecha-
nisms of cell migration in physiologically relevant environments.

Methods
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Biopolymer gel synthesis. We mixed rat tail collagen (Collagen 
R, 2 mg/ml, Matrix Bioscience, Berlin, Germany) and bovine skin 
collagen (Collagen G, 4 mg/ml, Matrix Bioscience) at a ratio of 
1:1. We then added 10% (vol/vol) sodium bicarbonate (23 mg/ml) 
and 10% (vol/vol) 10× DMEM (Gibco). We adjusted the solution 
to pH 10 with 43 µl of 1 M NaOH and polymerized it at 37 °C, 95% 
humidity and 5% CO2 for 1 h. For final collagen concentrations of 
1.2 mg/ml and 0.6 mg/ml, we diluted the solution before polym-
erization with a mixture of 1 volume part NaHCO3, 1 part 10× 
DMEM and 8 parts H2O. We polymerized fibrin gels with a final 
concentration of 4.0 mg/ml human fibrinogen after mixing with 
0.05 NIH units/ml human α-thrombin (both from Haemochrome 
Diagnostics) in buffer containing 0.15 M NaCl, 20 mM CaCl, 25 mM  
HEPES at pH 7.4 for 1 h at room temperature. We polymerized  
Matrigel (BD Bioscience) at a concentration of 10 mg/ml  
(undiluted) at 37 °C, 5% CO2 and 95% relative humidity for 1 h.

Mechanical description of collagen gels. We assumed that the 
collagen network deforms in an affine way beyond a certain 
length scale, and that below that scale, individual fiber segments 
deform in a non-affine way and evade mechanical stress using 
their internal degrees of freedom (Fig. 1d). This can be described 
by a nonlinear and asymmetric energy potential function w(λ) 
= w(∆l/l) of the fibers. The potential function w(λ) of individual 
collagen fibers is expected to exhibit three distinct regimes: buck-
ling, straightening and stretching. The differential fiber stiffness 
w″(λ) can thus be described with only four parameters: (i) a buck-
ling coefficient d0 describing an exponential decrease in fiber 
stiffness under compression, (ii) linear stiffness κ0, (iii) critical 
strain for the onset of strain stiffening λs and (iv) an exponential 
strain stiffening coefficient ds (Fig. 1d,e). 
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With a mean field approach, the deformation λ of a fiber  
is defined by the change in length ∆l relative to the fiber’s  
end-to-end distance in the unstressed state, λ = ∆l/l. The value of 
λ is determined by the fiber displacement field 


U  and the local 

average deformation field F = grad 

U  according to 

l = −| |Fe

Ω 1

with unit vector 

eΩ  pointing in the direction of the fiber orienta-

tion Ω. The mechanical stress of the fiber is then 

′ = ′′∫w w d( ) ( )l l l
l
0

Integration from zero implies that the material has no pre-stress. 
One can derive a constitutive equation that relates the nominal 
stress tensor N to the deformation field F by averaging the stress 
contributions of many fibers, assuming an isotropic and homo-
geneous distribution12 (Supplementary Note 2). 
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Rheometer experiment. We used a cone-plate rheometer 
to measure the stress-strain relationship of collagen gels for  
simple shear deformation. The collagen was polymerized inside 
the rheometer setup. The cone-plate rheometer applied a simple 
shear deformation such that the strain energy density depended 
only on the engineering shear strain. We obtained the linear 
stiffness κ0, the stiffening coefficient ds and the characteristic  
strain λs at the onset of stiffening by minimizing the error 
between the measured and computed stress-strain relationships 
(Supplementary Note 4).

Uniaxial stretch experiment. We cast collagen gel, fibrin gel  
or Matrigel into a flexible polydimethylsiloxane dish with a sulfo-
SANPAH (sulfosuccinimidyl 6-(4′-azido-2′-nitrophenylamino) 
hexanoate) activated surface. After polymerization, the gel  
in the dish was stretched uniaxially at a rate of 6% per hour  
with a stepper-motor device33, and the height of the gel as a  
function of applied stretch was measured with a microscope34. 
We fit the buckling coefficient d0 of our constitutive equation  
(equation (3)) to best match the measured relationship of  
vertical versus horizontal strain. We took the other three material 
parameters of the constitutive equation from the shear rheom-
eter experiment (Supplementary Note 4) in the case of collagen  
and from extensional rheometer experiments in the cases of  
fibrin and Matrigel.

The vertical contraction of a gel under horizontal stretching can 
be converted to an apparent Poisson’s ratio, which in the case of 
collagen is considerably greater than 1. According to linear elastic 
theory, a Poisson’s ratio of >0.5 leads to a negative bulk modulus, 
implying that the undeformed configuration of the material is 
unstable. The Poisson’s ratio of a hydrogel, however, is that of the 
composite material, which in the case of a collagen gel consists of 
collagen fibers and water. When a collagen gel is stretched, water 
can be released. Moreover, the apparent Poisson’s ratio of a col-
lagen gel is highly asymmetric and nonlinear. For compression, 
the apparent Poisson’s ratio is much less than 0.5 (Fig. 1b).

Extensional rheometer. For measuring the stress-strain  
relationship under uniaxial stretch, a cylinder of collagen,  
fibrin or Matrigel was cast between two parallel plates (diameter, 
5 cm; gap, 3 mm) (Fig. 2a). The lower plate was connected to a 
precision scale (AND GR-200), and the upper plate was mounted 
on a motorized micromanipulator (Eppendorf Injectman). The 
gel was extended at a rate of 10 µm/s, and the weight was continu-
ously recorded. The force-extension curve of the gel was corrected 
for the mechanical compliance of the device. The stress-strain 
relationship was computed from the corrected force-extension 
curve and the known geometry of the gel cylinder. The material 
parameters were then obtained as described for the shear rheom-
eter experiment (Supplementary Note 4).

Finite-element method. To solve the constitutive equation  
(equation (3)) for arbitrary geometries and boundary condi-
tions, we used a finite-element method in which the material was  
represented by a mesh of mechanically coupled tetrahedra. Given 
a set of displacements of the nodes (cornerpoints of the tetrahe-
dra), we calculated the nodal forces as the derivative of the total 
strain energy of the material by the displacements of the respec-
tive nodes (Supplementary Note 2). In the case of a point-like 
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force applied to the surface of a gel, the mesh also included the 
free top surface. All other boundaries were fixed. The considered 
gel region around a cell was larger than 480 µm.

Magnetic-tweezers experiment. We measured the material  
displacement field in response to a point-like force at the surface 
by applying a lateral force of 10–30 nN to a superparamagnetic 
bead (Microparticles Berlin, Germany; diameter, 5 µm) with 
magnetic tweezers5,35. The gel was decorated with 1-µm fluores-
cent beads (FluoSpheres, Molecular Probes) that served as fidu-
cial markers. A stack of images around the magnetic bead was 
acquired before and 10 min after the onset of force application. 
The displacement of each fluorescent marker was then obtained 
from the image data as described in ref. 5. The measured displace-
ments were interpolated to a regular finite-element mesh with a 
grid constant of 7.5 µm in the case of unconstrained force recon-
struction, or to an irregular mesh with increasing mesh density 
near the magnetic bead in the case of constrained (point-like) 
force reconstruction. The coefficient of variation (CV) of the bead 
radius was ~5% as stated by the manufacturer, which led to an 
error (CV) of the applied force of 15%.

Constrained force reconstruction through direct fitting. Given 
a set of measured displacements of fluorescent markers inside 
a gel, we minimized the mismatch between the simulated and 
the measured gel displacements by shifting the location of force 
application in the simulation, as well as by adjusting the force 
amplitude and direction. The simulated displacement fields were 
calculated for a discrete set of force amplitudes and were linearly 
interpolated between these discrete solutions. The simulated dis-
placement field was shifted, rotated and interpolated onto the 
positions of the fluorescent markers for which the displacement 
was measured. We then minimized the least-square error by ran-
domly varying the shift, rotation and amplitude parameters until 
convergence was reached.

Cell culture. Cells were cultured in 25-cm2 flasks without sur-
face coating in DMEM (1 g/l D-glucose) with 10% FBS, 1% 
penicillin and streptomycin at 37 °C, 5% CO2 and 95% humidity.  
Cells were passaged every 3 d. Trypsin-EDTA was used to detach 
cells. Cells were mixed with collagen solution before polymeri-
zation at a concentration of 15,000 cells/ml and incubated for 
12 h before experiments. MDA-MB-231 breast carcinoma cells  
were obtained from ATTC; dual-color H2B-GFP/cytoplasmic 
TagRFP HT1080 fibrosarcoma cells were a gift from Katarina 
Wolf and were generated by Esther Wagena (Radboud University 
Nijmegen). All cell lines were checked with a mycoplasma PCR 
detection kit (Minerva Biolabs).

Fiber-pattern matching. To measure the displacement field of 
the matrix surrounding the cells, we imaged the collagen network 
directly using confocal reflection microscopy (Leica SP5X, 20× 
dip-in water-immersion objective (numerical aperture (NA) 1.0)). 
Confocal reflection microscopy needs only low laser intensities 
and prevents photodamage of the cells. From two stacks of con-
focal reflection images (voxel size of 0.72 µm in all dimensions, 
field of view of 370 µm in all dimensions) that were taken before 
and after cell force relaxation with cytochalasin D, we obtained 
the cell-induced deformation field over a regular grid with  

a 7.5-µm mesh size by particle image velocimetry as follows.  
The algorithm we used calculated the cross-correlation between 
corresponding local sections (12 × 12 × 12 voxels) of the two 
stacks. It then shifted the section of the first stack by subvoxel 
increments using trilinear interpolation. This shift corresponded 
to a displacement vector. To find the local displacement with the 
highest cross-correlation, we used the downhill simplex method36. 
The accuracy of the deformation measurements was 60 nm (r.m.s.) 
(Supplementary Note 12). For 1.2-mg/ml gels with an average 
pore size of 3.8 µm, the optimal mesh size of the gel subvolumes 
used for cross-correlation, and thus the spatial resolution of the 
algorithm, was 7.5 µm (Supplementary Note 12).

Force reconstruction. We reconstructed the 3D force field  
(force per volume) inside a continuous material, assuming that 
cellular forces could exist everywhere inside the considered  
volume. This left us with a computational problem, as the number 
of fitted parameters (force vectors) equaled the number of data 
points (measured displacement vectors). We therefore used a 
regularization method. We performed regularization by mini-
mizing a target function (u) that was the sum of the ordinary 
least-square displacement error and a locally weighted norm of 
the nodal forces. 

L u u u f u
P A

( ) ( )= − +measured
2 2

where x Q
2

 denotes x QxT . The diagonal matrix P  has a value of 
1 if the displacement of the corresponding node is known and a 
value of 0 if the displacement reconstruction algorithm is not able 
to measure the local displacement, or if the corresponding node 
lies outside of the imaged section. The matrix A  is a diagonal 
matrix containing the local penalty weights. If A  is proportional 
to the identity matrix (this corresponds to the Tikhonov regu-
larization method), all nodal forces are penalized and therefore 
underestimated. To address this issue, we used the maximum-
likelihood regression method, which iteratively assigns a lower 
penalty weight to nodes that have a high force37. 
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This procedure reliably penalizes forces due to uncorrelated  
displacement noise but not cell forces, which are accompanied  
by long-ranging and correlated displacements. Thus, the  
algorithm finds the cell forces in an unconstrained manner. It 
is also possible to constrain the forces to the surface of the cell 
by predefining low or zero values for the local-penalty-weight 
matrix A  at specific points corresponding to the cell surface 
(Supplementary Note 18).

The locally weighted norm of the nodal forces, f u
A

( )
2

, is 

nonlinear in u, and therefore L(u) cannot be easily minimized. We 
expanded f u( )  as a first-order Taylor series for nodal displace-
ments u + ∆u (Supplementary Note 9), using the stiffness tensor 
K (Supplementary Note 3). 

L u u u u u f K u
P u u

A
( )+ = + − + + ⋅∆ ∆ ∆measured

2 2



©
20

15
N

at
u

re
 A

m
er

ic
a,

 In
c.

  A
ll 

ri
g

h
ts

 r
es

er
ve

d
.

doi:10.1038/nmeth.3685 nature methods

To find the value of ∆u that minimized this expression, we 
solved the following equation using the conjugate gradient 
method38: 

( ) ( )P K A K u P u u K A fu u u u+ ⋅ ⋅ ⋅ = ⋅ − − ⋅ ⋅∆ measured

We then added ∆u  to the estimated nodal displacements u and 
updated the Taylor coefficients fu  and Ku  and the local weight 
matrix A  for the next iteration until convergence was reached.

To compute the total contractility of a cell without bias caused by 
noise forces from regions outside the cell, we computed for every 
node rn


 of the gel the contractile force Ctot as the scalar product 

of the force at that node with a unit vector pointing toward the 
cell force center rc

  (ref. 39) (Supplementary Note 13).
The source code of the algorithm, including the 3D particle 

image velocimetry and the unconstrained force reconstruction, 
is available under MIT license on the collaborative coding plat-
form GitHub (https://github.com/Tschaul/SAENO) and is free 
to download. A compiled version of the software and a tutorial 
are provided as Supplementary Software, together with a sam-
ple data set (http://lpmt.biomed.uni-erlangen.de/3DTractions/
SampleData.rar).

Analysis of cell migration. We extracted the center-of-mass 
movement of the cells from their brightfield projections.  

The movement of the center of mass is described as a persistent  
random motion with time-varying migratory activity and  
migratory persistence. We extracted the time courses of both  
of these parameters from the measured trajectories using a 
Bayesian method of sequential inference28. Only cells that were 
not undergoing cell division during measurements were included 
in the correlation analysis.

Statistical analysis. Differences between measurements  
were considered statistically significant at P < 0.05 by Student’s 
two-tailed t-test assuming unequal variances.
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Note 1 Stiffness tensor of a semi-affine material
The stiffness tensor is defined as the derivative of the nominal stress by the deformation gradient.

Kijkl = ∂Nij
∂Fkl

In a linear material, the stiffness tensor is independent of the deformation state of the material. Since our
constitutive equation is non-linear, however, the stiffness tensor depends on the deformation. Differentiation of
Eq. 3 (main text) gives

Kijkl = ∂Nij
∂Fkl

=
〈
eΩi · eΩk ·

(
|F · ~eΩ| · w′′(|F · ~eΩ| − 1)− w′(|F · ~eΩ| − 1)

|F · ~eΩ|2
· (1)

(F · ~eΩ)j · (F · ~eΩ)l
|F · ~eΩ|

+ w′(|F · ~eΩ| − 1)
|F · ~eΩ|

· δjl
)〉

Ω
; k ∈ {x, y, z}; l ∈ {x, y, z}

This exact expression of the stiffness tensor is used further below for the traction force reconstruction in a non-
linear material. For readers who are interested to know how this stiffness tensor is related to the more familiar
description of mechanical properties in the framework of linear elastic theory, we provide the following explanation.
In linear elastic theory, the stiffness of a material is fully defined by two parameters, for example the Young’s
modulus (Y ) and the Poisson’s ratio (ν). To relate the 4 parameters of our constitutive equation to Y and ν,
we approximate the stiffness tensor K for small strain (F ≈ I). In this case, the fiber stretch λ is 0 for all solid
angles [θ, φ] = Ω, which yields the following simplifications:

w(λ) = 0; w′(λ) = 0; w′′(λ) = κ0;

We can therefore rewrite the stiffness tensor

Kijkl(F = I) = κ0 · 〈eΩi · eΩk · eΩj · eΩl〉Ω

The stiffness for extension, as measured in our extensional rheometer experiments, therefore can be expressed as
a function of Y and ν [ZienkiewiczV1 page 132]

Kzzzz(F = I) = 1
4π · κ0 ·

¨
cos(θ)4 dΩ = κ0

5 = Y · (1− ν)
(1 + ν)(1− 2ν) (2)
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Similarly, the stiffness perpendicular to the stretch direction is given by

Kzzyy(F = I) = 1
4π · κ0 ·

¨
cos(θ)2 · sin(θ)2 · sin(φ)2 dΩ = κ0

15 = Y · ν
(1 + ν)(1− 2ν)

Together, it follows that

Y = κ0

6 and ν = 0.25 (3)

As described below, we experimentally confirm a Poisson’s ratio of ν = 0.25 for a linear elastic biopolymer network
such as Matrigel.

Note 2 Hyperelastic finite element method
The finite element method is used to numerically compute solutions to mechanical boundary value problems. In
most applications, linear materials are considered. To solve boundary value problems imposed by a contracting
cell embedded in a collagen biopolymer network, however, we need a fully hyperelastic finite element model. The
geometry of the material, in this case the collagen gel, is discretized into multiple tetrahedral elements, which
together fill the entire space of the material. Neighboring elements share one or more of their corner points. The
displacement field inside the material is discretized to theses corner points (the nodes) and linearly interpolated
inside the tetrahedra. Because of this linear interpolation, the deformation gradient (F) is constant over the
volume of a tetrahedron. The deformation gradient is the linear map of the undeformed tetrahedron T onto the
deformed tetrahedron T ′ [Ogden page 84].
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Figure S 1: (A) A tetrahedron T =̂[ ~ra, ~rb, ~rc, ~rd] is deformed by displacements ~ua, ~ub, ~uc and ~ud at its corner points. The
primitive tetrahedron P has three of its edges aligned with the coordinate axes ~ex, ~ey and ~ez. Linear maps (B and A) of
P onto T as well as T ′ are straight forward to compute. The linear map F of T onto T ′ is then simply given by A · B−1.
(B) Tetrahedral elements of the finite element model are filled with fiber elements, and the stresses at the faces of each
tetrahedron are computed by averaging the individual forces of the intersecting fibers.

Next, we need to find the matrix B that describes the linear map of the undeformed tetrahedron T onto the
primitive tetrahedron P that is defined by corner points [(0, 0, 0) (1, 0, 0) (0, 1, 0) (0, 0, 1)] (Fig. S 1). B is given
by the matrix with the vectors (~rb − ~ra) , (~rc − ~ra) and (~rd − ~ra) as column vectors. We also need the matrix A
that describes the linear map of P onto the deformed tetrahedron T ′. It is given by the matrix with the vectors
(~rb− ~ra + ~ub− ~ua) , (~rc− ~ra + ~uc− ~ua) and (~rd− ~ra + ~ud− ~ua) as column vectors. The linear map F that maps
T to T ′ is then given by A ·B−1. Using the 4x3 helper tensor

Xmk =

x y z

a

b

c

d


−1 −1 −1
1 0 0
0 1 0
0 0 1


and using Einstein notation, the deformation gradient matrix F can be rewritten as a function of the nodal
displacements ~um:

Aij = Bij + umi · Xmj ; m ∈ {a, b, c, d}; i ∈ {x, y, z}; j ∈ {x, y, z}
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Fij = Bik ·B−1
kj + umi · Xmk ·B−1

kj ; k ∈ {x, y, z}

= δij + umi · Xmk ·B−1
kj︸ ︷︷ ︸

Φmj

where Φ is the shape tensor of the tetrahedron and δij is the Kronecker delta. The derivative of F with respect
to the displacements ~um, which when multiplied with the stress tensor N gives the nodal forces ∂ET

∂uml
of the

tetrahedron T (ET denotes the strain energy of the tetrahedron T ), is then given by

∂Fij
∂umk

= δik · Xmn ·B−1
nj = δik · Φmj (4)

∂ET
∂uml

= VT ·
∂WT

∂Fij

∂Fij
∂uml

= VT ·NTlj · Φmj (5)

Next, the equilibrium condition (Cauchy’s law of motion) is formulated for a tetrahedral mesh. This is done by
applying the principle of virtual work, which states that a deformation is a solution to a given boundary value
problem if and only if the variation of the potential energy vanishes for all admissible small variations of the
deformation ~δu. [Ogden page 312]
Below, we solve the boundary value problem of imposed displacements and tractions for a single tetrahedron
T =̂[~ra, ~rb, ~rc, ~rd]. The faces of the tetrahedron are indexed in the following way:

α =̂ [~rb, ~rc, ~rd]
β =̂ [~rc, ~rd, ~ra]
γ =̂ [~ra, ~rb, ~rd]
δ =̂ [~ra, ~rb, ~rc]

(6)

l ∈ {α, β, γ, δ}

ATl denotes the surface area of the face l of the tetrahedron T . The surface traction at a given set of faces {l}
is ~tTl. Further, only a subset of the corner points of the tetrahedron {d} ⊂ {m} is free to move, and a constant
body force ~bT (e.g. an external force from the cell or a magnetic bead) is acting on the tetrahedron with volume
VT and density ρ0. We can write the variation of the potential energy as [Ogden page 308]

ˆ
VT

δW dV −
ˆ
VT

ρ0 ~bT · ~δu dV −
ˆ
A{l}

~tTl · ~δu dA = 0 (7)

Here, ~δu are small variations to the displacements of the tetrahedron. The first term is the variation of the
total strain energy inside the tetrahedron. The strain energy density is a function of the deformation gradient
and is constant over the tetrahedron. We therefore rewrite the first term as a function of the variation of the
displacements at the corner points ~δum.

ˆ
VT

δW dV = VT ·
∂WT

∂FTij

∂FTij
∂umk

δumk = ∂ET
∂umk

δumk (8)

In the second term of Eq. S 7, the variation of the displacements are averaged over the volume and multiplied
with the body force. The second term can therefore be expressed as the arithmetic mean of the variation of the
displacements at the 4 corner points.
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ˆ
VT

ρ0~b · ~δu dV = ρ0 · VT · bTk ·
1
4δumk (9)

Finally, in the third term of Eq. S 7, the variation of the displacements are averaged separately over the faces,
which are subject to boundary tractions. The average surface displacements ūlk are given by the arithmetic mean
of the 3 displacements of the corner points framing the face of the tetrahedron. With the definition of the face
index (Eq. S 6), we can derive the helper tensor

hlm = ∂ ~̄ul
∂ ~um

=

a b c d

α

β

γ

δ


0 1

3
1
3

1
3

1
3 0 1

3
1
3

1
3

1
3 0 1

3
1
3

1
3

1
3 0

 (10)

m ∈ {corner points of the tetrahedron: a, b, c, d}; l ∈ {faces of the tetrahedron: α, β, γ, δ}

and write
ˆ
AT{l}

~tl · ~δu dA = tTlk · hlm ·ATl · δumk (11)

Summing up all three terms, we can rewrite the variation of the potential energy and then factor out the variation
of the displacements at the corner points ~δum:

∂ET
∂umk

δumk − ρ0 · VT · bk ·
1
4δumk − tTlk · hlm ·ATl · δumk = 0

= δumk · (
∂ET
∂umk

− ρ0 · VT · bTk ·
1
4 − tTlk · hlm ·ATl); k ∈ {x, y, z}

For the fixed nodes, the variation of the displacements are zero. Therefore, we sum only over the free corner of
the tetrahedron, d instead of m.

δudk · (
∂ET
∂udk

− ρ0 · VT · bTk ·
1
4 − tTlk · hld ·ATl) = 0; d ∈ {free corner points of the tetrahedron}

Since this equation has to hold for all possible variations of the displacements, the term in the brackets must be
zero.

∂ET
∂udk

− ρ0

4 · VT · bTk − tTlk · hld ·ATl = 0 (12)

In order to extend this equation to multiple connected tetrahedra, we sum over multiple tetrahedra. All arguments
keep their meaning so that we can apply the summation directly to (Eq. S 12) using the helper tensor θ:

θTom =

1, if the node o is the corner point m of the tetrahedron T

0, else
(13)

Again, we only sum over free nodes of the tetrahedral mesh:
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θTom ·
(
∂ET
∂umk

− ρ0

4 · VT · bTk − tTlk · hlm ·ATl
)

= 0; o ∈ {free nodes}

We can rewrite this as a differential equation of the total strain energy of the body E =
∑
T ET .(

fu
)
ok

= ∂E

∂uok
= θTom ·

(ρ0

4 · VT · bTk + tTlk · hlm ·ATl
)

= −
(
fext

)
ok

(14)

with fext denoting the external nodal forces. Therefore, the body is in equilibrium if the internal nodal forces fu
counterbalance the external nodal forces, which can be calculated for any boundary value problem using Eq. S
14. In reverse, Eq. S 14 can be used to calculate the body forces, which describe external forces from a cell or a
magnetic bead, given a set of nodal forces fu as retrieved from the unconstrained force reconstruction algorithm.

Note 3 Discretization of the semi-affine elastic network model for tetra-
hedral meshes

In our semi-affine elastic network description, the strain energy density is given by.

W = 〈w(|F · ~er(Ω)| − 1)〉Ω (15)

To make it numerically accessible, the averaging over the solid angle Ω is substituted by averaging over a finite
set of Nb angles Ωb that are isotropically distributed. We use the notation:

~sb = ~er(Ωb)

~s′b = FT · ~sb

The integration over the material volume is substituted by a summation over the volumes of tetrahedra T that fill
the space of the body (see previous section). With that, the strain energy is:

ET = 1
Nb

∑
b

w
(∣∣∣~s′b∣∣∣− 1

)
· VT

E =
∑
T

ET

ET is the energy stored inside the tetrahedron T . VT is the volume of the tetrahedron T . The nodal forces fu
(Eq. S 14) are defined as the derivatives of the total energy with respect to the nodal displacements ~ut. In the
following, we use the helper tensor θ (Eq. S 13).

(
fu
)
ol

= ∂E

∂uol
=
∑
T

∑
m

θTom ·
∂ET
∂uml

; T ∈ {tetrahedra}; o ∈ {nodes}; m ∈ {a, b, c, d}; l ∈ {x, y, z} (16)

Here, ∂ET

∂uml
are the nodal forces of the tetrahedron T .
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∂ET
∂uml

= 1
Nb
· VT ·

∑
b

∂w(|~s′b| − 1)
∂|~s′b|︸ ︷︷ ︸

w′(|~s′
b
|−1)

·
∂|~s′b|
∂Fij︸ ︷︷ ︸

s′
bi
·sbj

| ~s′
b
|

· ∂Fij
∂uml

Using (Eq. S 4) we obtain:

∂ET
∂uml

= 1
Nb
·
∑
b

w′(|~s′b| − 1) · s
′
bi · sbj
|~s′b|

· δil · Φmj = 1
Nb
·
∑
b

w′(|~s′b| − 1)
|~s′b|

· s′bl · Φmj · sbj︸ ︷︷ ︸
(Φ·~sb)m=s∗

bm

Finally, the stiffness of the tetrahedral mesh Ku can be derived.

(
Ku

)
olpi

= ∂2E

∂uol∂upi
=
∑
T

∑
r

∑
m

θTom · θTpr ·
∂2ET

∂uml∂uri
; r ∈ {a, b, c, d}; p ∈ {nodes}; i ∈ {x, y, z} (17)

∂2ET
∂uml∂uri

= ∂

∂uri

(
1
Nb

∑
b

w′(|~s′b| − 1)
|~s′b|

· s′bl · s∗bm

)

= 1
Nb

∑
b

s∗bm ·

(
∂

∂|~s′b|

(
w′(|~s′b| − 1)
|~s′b|

)
·
∂|~s′b|
∂uri

· s′bl +
w′(|~s′b| − 1)
|~s′b|

· ∂s
′
bl

∂uri

)

= 1
Nb

∑
b

s∗bm · s∗br ·

(
|~s′b| · w′′(|~s′b| − 1)− w′(|~s′b| − 1)

|~s′b|2
· s
′
bi · s′bl
|~s′b|

+
w′(|~s′b| − 1)
|~s′b|

· δli

)
This can be reexpressed by the stiffness tensor K

∂2ET
∂uml∂uri

=
∑
j,k

VT ·KTjlki · Φmj · Φrk

Note 4 Model fit to bulk rheology
To extract the four material parameters κ0, d0, λs and ds from macrorheological measurements, we compute
the response predicted by our constitutive equation and minimize the mismatch between data and prediction by
varying the parameter values. Below, we describe how the model predictions are calculated for three different
macrorheological experiments.

Note 4.1 Shear rheometer

The shear rheometer applies a simple shear deformation γ of the following form to the gel:

F(γ) =

 1 γ 0
0 1 0
0 0 1


The resulting stress is then given by the partial derivative of the strain energy density with respect to the engineering
shear strain γ, which we compute numerically.
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σ(γ) = dW (F(γ))
dγ

(18)

Note 4.2 Extensional rheometer

The extensional rheometer applies a uniaxial strain ε of the following form to the gel:

F(ε) =

 ε 0 0
0 1 0
0 0 1


The resulting stress is then given by the partial derivative of the strain energy density with respect to the strain ε,
which we compute numerically.

σ(ε) = dW (F(ε))
dε

(19)

Note 4.3 Uniaxial stretch

In this experiment, the deformation of the gel is described by two parameters. With the stretching device, we
impose a horizontal strain λh and then measure the vertical strain λv. The deformation gradient is given by

F(λh, λv) =

 λh 0 0
0 1 0
0 0 λv


⇒W (F(λh, λv)) = W (λh, λv)

To compute λv, we minimize the strain energy density with respect to λh numerically.

λv(λh) = argmin(W (λh, λv), λv) (20)

Note 5 Concentration dependence of material parameters for collagen
gels

We measure the strain-dependent Young’s modulus as well as the vertical contraction as a function of the horizontal
stretch for three different collagen concentrations (0.6, 1.2, and 2.4 mg/ml). By fitting our material model, we
find that the Young’s modulus increases with the concentration while all other parameters remain unchanged.
This is in agreement with the notion that only the density of fibers increases with the collagen concentration, but
that the internal mechanics of individual fibers does not change.

Linear stiffness Linear range Strain stiffening coefficient Buckling parameter
0.6mg/ml 447Pa 0.0075 0.033 0.0008
1.2mg/ml 1645Pa 0.0075 0.033 0.0008
2.4mg/ml 5208Pa 0.0075 0.033 0.0008
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Figure S 2: Mechanical properties of collagen gels with different concentrations. (Left) Material stress as a function of
uniaxial strain measured in an extensional rheometer for three different collagen concentrations (solid lines). With increasing
concentration, the gel becomes stiffer. Blue lines indicates the semi-affine model fit to the data. (Right) Vertical contraction
as a function of the horizontal stretch measured for three different collagen concentrations (solid lines) and model fit (dashed
line). The collagen gels with different collagen concentrations do not show strong differences in their vertical to horizontal
contraction ratio. Vertical contraction is not strongly affected by the collagen concentration. For principals strains (vertical
contractions) above 40 %, data and fit deviate due to batch dependent variations of the buckling parameter.

Note 6 Material parameters of a fibrin gel
In agreement with published data, from extensional rheometer and uniaxial stretch measurements, we find that
fibrin shows no strain stiffening at small strain (< 50 %) but an abnormal Poisson’s ratio [Brown 2009]. In our
model, the strain stiffening depends on the response of the fibers under stretch, whereas the abnormal Poisson’s
ratio depends on the response of the fibers under compression. Hence, strain stiffening and vertical contraction
under stretch are decoupled both in our model and in the data. During polymerization, fibrin gels form a dense
but thin (< 1µm) scalelike skin at the surface. The mechanical stiffness of the skin layer is considerably higher
than that of the fibrin bulk. Therefore, we were unable to verify our model under point-like forces with a magnetic
tweezer.

Linear stiffness Linear range Strain stiffening coefficient Buckling parameter
4.0mg/ml 2091Pa ∞ ∞ 0.002
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Figure S 3: Fibrin gels show vertical contraction due to fiber buckling but no strain stiffening for strains up to 50 %. (Left)
Material stress as a function of uniaxial strain measured in an extensional rheometer for a fibrin gels. We find an linear
response for strains up to 50 % (Right) Vertical contraction as a function of the horizontal stretch measured for a fibrin gel
(solid lines) and the model fit (dashed line).

Note 7 Material parameters of Matrigel
For Matrigel (10mg/ml, BD Bioscience, polymerized at 37 °C for 1h), we find a constant strain-independent
Young’s modulus of 394Pa and a constant vertical to horizontal contraction ratio of 0.34, which exactly matches
the prediction for a material in which the fibers are linear in compression and extension and therefore do not
buckle. In this case the Poisson’s ratio is 0.25 (Eq. S 3). The semi-affine elastic network model predicts that the
displacement field around a point-like force is also symmetric, in contrast to a material that shows buckling (Fig.
3 F+H, main text). This is in agreement with measurements where we record the displacement field around a
magnetic bead that is laterally pulled with a force of 20nN .

Linear stiffness Linear range Strain stiffening coefficient Buckling parameter
10mg/ml 2364Pa ∞ ∞ ∞
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Figure S 4: Matrigel shows neither fiber buckling nor strain stiffening. (A) Material stress as a function of uniaxial strain
measured in an extensional rheometer for Matrigel. We find an linear response for strains up to 50 % (B) Vertical contraction
as a function of the horizontal stretch measured for Matrigel (green) and model fit (blue). Matrigel shows a horizontal
contraction ratio of 0.34, in agreement with the model prediction for fibers that do not buckle under compression. (C) The
matrix displacement field around a magnetic bead to which we applied a force of 20nN . (D) Model predictions for the
displacement field agree with the measurements.

Note 8 Detailed influence of material parameters on bulk rheology
To investigate the influence of the material parameters (κ0, d0, ds and λs) on different non-linear effects, we analyze
how the predicted macrorheological behavior changes when we independently vary the four material parameters.
We find that the buckling coefficient d0 has the largest effect on the vertical contraction under horizontal stretch
(Fig. S 5 B). By contrast, the stiffening coefficient ds and especially the onset of fiber stiffening λs have only a
minor effects on the vertical contraction under horizontal stretch (Fig. S 5 A,C). The linear stiffness under shear is
solely determined by the linear fiber stiffness κ0 (Fig. S 5 E). The degree of strain stiffening is determined mostly
by ds (Fig. S 5 D), and the onset of strain stiffening by λs (Fig. S 5 F). Thus, the fit parameters have a clear
physical meaning and show only a small covariance, which makes the fit to the data robust.
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Figure S 5: Influence of model parameters on macrorheology. (A,B,C): Uniaxial stretch: Data in green, fit in blue, fit
with altered parameters in pink and brown (D,E,F) Shear rheometer experiment: Data in green, fit in blue, fit with altered
parameters in pink and brown.

Note 9 Simulations of collagen gel micromechanics

Figure S 6: Cut-open view of a tetrahedral mesh. (A) The whole mesh has a spherical shape (diameter: 800µm). White
box indicates the section shown in B. (B) Magnified view to the ellipsoidal cell inclusion with a length of 50µm and a
width of 30µm. The mesh consist of 63510 tetrahedra with their density increasing towards the center to achieve a higher
resolution at the location of the highest material stresses and deformations.
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The Matlab package Distmesh [Persson] is used to generate tetrahedral meshes with full control over geometry
as well as node density. The average tetrahedron quality of the used meshes is 0.85. The simulated collagen gel
is a sphere with a diameter of at least 800µm with sticky boundary conditions. In the center of the sphere is an
ellipsoidal hole representing the cell. The contractility of the cells is modeled as a Neumann boundary condition
(defining the force). We assume that the cell generates a constant stress Ncell throughout its body. From this,
the tractions ~t on the cell-gel-interface can be computed by multiplying the normal vector ~n of the boundary
tetrahedral faces with the stress tensor

~t = ~n ·Ncell

For the magnetic tweezer experiments, we simulate the collagen gel response to a force acting on a spherical bead
(diameter 5µm). The bead is half embedded in a half space of collagen material so that the bead center is at the
level of the collagen surface. The top surface of the collagen gel is modeled as a free boundary condition. The
bead is able to rigidly move in the direction of the applied force but is not allowed to rotate.
The boundary value problem (force equilibrium) is solved by minimizing the total strain energy for the given force
and displacement constraints. The strain energy density inside each tetrahedron depends only on its deformation
gradient FT , which in turn depends on the displacements of its nodes. The total strain energy E of the material
can be expressed as the sum over the strain energy density W (FT ) times the volume of every tetrahedron VT ,

E =
∑
T

W (FT ) · VT

We numerically compute the set of second order Taylor-series coefficients fu (Eq. S 16) and Ku (Eq. S 17) of
the total strain energy.

E(u+ ∆u) = Eu + fu ·∆u+ 1
2∆u ·Ku ·∆u (21)

Here, the dot product in fu · ∆u stands for
∑
oj

(
fu
)
oj

(∆u)oj with o ∈ {free nodes} and j ∈ {x, y, z}. The
equilibrium condition dE/du = −fext (Eq. S 14) then reduces to a set of linear equations:

−fext = fu +Ku ·∆u (22)

We use the conjugate gradient method to solve this equation. Because the material model is highly nonlinear,
we iterate until convergence is reached. The combination of a semi-affine elastic network description with finite
element analysis as described here is not limited to collagen gels but may also be used for other biopolymer
networks.
We compare simulations of a collagen gel also to simulations of a linear material, for which we chose w′′(λ) (Eq.
1, main text) to have a constant value such that both material models (linear and non-linear) show the same linear
shear modulus of 43Pa. The resulting stiffness for the linear material is κ0/2 due to the absence of buckling.
The linear material shows a constant and symmetric Poisson’s ratio of ν = 0.25, whereas the non-linear material
shows a asymmetric and strain-dependent Poisson’s ratio that can exceed values of ν = 4.

Note 9.1 Isotropic contraction and dilation of a spherical inclusion

To compute the mechanical response of collagen gels to cellular forces, we consider dilating and contractile forces
for spherical and elongated cells. First, we analyze the stress and strain distribution in the collagen network around
a spherical hole. Dilating forces resemble the situation of a cell that attempts to push through a restricting network
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pore, or the situation of a growing cell cluster spheroid inside a collagen matrix. Contracting forces resemble the
situation of a cell that spreads in a collagen matrix by adhesive and contractile forces. From the computed stress
and strain distribution in the collagen network, we calculate the isotropic pressure inside the hole that is needed to
invoke a certain change in hole diameter. In addition to modeling the non-linear behavior of collagen, we perform
the same calculation also for a linear elastic material with the same linear shear modulus as collagen but without
buckling or strain stiffening. As expected for a linear material, we find for both, contracting and dilating forces
the same slope of the pressure versus hole diameter relationship. By contrast, for a non-linear collagen network,
a much higher pressure is needed to dilate the hole by more than 10 % compared to contracting the hole by 10 %
(Fig. S 7 C). This asymmetric behavior is attributable to the buckling vs. strain stiffening asymmetry of the
fibers. Moreover, we find that during dilation, circumferential fibers close to the hole tauten and bear most of
the stress (Fig. S 7 B), forming a stiff ring around the hole like a strait-jacket. This ring effectively shields the
bulk of the collagen gel from mechanical stress and prevents the deformations to spread out. The stiffening of
circumferential fibers also explains the strong steric hindrance for cell migration in collagen networks with small
pore sizes [Friedl 2011, Wolf 2003, Wolf 2013, Zaman 2006]. By contrast, during contraction, the stresses and
strains are conducted outwards by the radially stretched fibers and thereby spread over a large distance (Fig. S 7
A), resulting in a much softer response that is nearly indistinguishable from a linear material (Fig. S 7 C). As a
possible consequence, the cell may not be able to spread and elongate, similar to the behavior that cells show on
very soft 2-D substrates [Engler 2004]. This may explain why many cancer cell lines that are able to metastasize
in vivo do not readily migrate in collagen gels [Mierke 2008].
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Figure S 7: Collagen gels respond differently to dilating and contracting forces, depending on cell shape. (A,B) Fiber
deformations around a contracting or dilating three-dimensional ellipsoidal hole. Calculations are performed on a FE grid.
For better visualization, only a small number of randomly selected fibers are shown. Blue hues indicate compressed fibers,
red hues indicate stretched fibers. Undeformed fibers are not visible. (A) During contraction, the strain is effectively
conducted outwards and spreads over a large distance. (B) Under dilation, the strain is not conducted outwards due to
fiber buckling. In addition, circumferential fibers tauten and stiffen. (C) The pressure needed to dilate or contract a
spherical hole in a linear material (brown) and in a collagen gel (blue), both with the same linear shear modulus. The linear
material shows a nearly symmetric response during contraction and dilation. By contrast, collagen gels show a pronounced
asymmetric behavior. Strain stiffening is much stronger for dilating than for contracting forces.

Note 9.2 Polarized contraction of an ellipsoid inclusion

To explore how the stiffening response under contraction depends on cell shape, we consider a polarized contracting
cell with an ellipsoidal shape, which resembles the common appearance of a migrating mesenchymal cell inside
collagen. The cell generates a uniaxially contracting stress (or prestress) throughout its body, resulting in tractions
on the cell-gel-interface. We then calculate the elastic response of the collagen to these tractions and the resulting
relative cell length changes (cellular contraction). We find that cells with higher aspect ratio exhibit much smaller
relative length changes for the same level of prestress (Fig. S 8 A). This equates to a considerably higher apparent
stiffness of the material for the more polarized cells. The reason for the apparent stiffening of the material is that
the material deformation at the cell poles, for a given cellular contraction, is larger in the case of an elongated cell
[Zemel 2010]. Therefore, by shape polarization, the cells can effectively compensate for the small stiffness and
weak stiffening response of collagen networks under contraction. Furthermore, in agreement with the literature,
we find that matrix displacements around elongated cells in a non-linear collagen gel spread out over much larger
distances, up to several hundred microns, compared to displacements in a linear material where they decay much
more quickly (Fig. S 8 D) [Abhilash 2014].
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Figure S 8: (A,B) Fiber deformations around a contracting or dilating three-dimensional ellipsoidal hole. Blue hues indicate
compressed fibers, red hues indicate stretched fibers. Calculations are performed on a FE grid. For better visualization,
only a small number of randomly selected fibers are shown. Undeformed fibers are not visible. Cells in A and B produce
the same contractile stress of 51Pa along their axis of polarization. For a more elongated cell (A, aspect ratio = 4.2), the
material responds with less deformation than for a more spherical cell (B, aspect ratio = 1.7). (C) Contractile stress vs.
contractile strain for different cell shapes in a linear material (brown) and in a collagen gel (blue) for different cell aspect
ratios. (D) Calculated matrix displacement along the primary axis of an elongated cell (aspect ratio = 8.3) for a linear
material (brown) and a collagen gel (blue) with the same linear shear modulus. Displacements in the collagen gel decay
more slowly.

Note 9.3 Comparison of calculated and measured displacement fields around cells

We compare the calculated matrix displacement fields to measured matrix displacement fields around single cells in
a collagen gel [Koch 2012]. We fit the position, orientation and contractile stress of an ellipsoidal inclusion so that
the calculated matrix displacements best match the measured displacements around a highly invasive, elongated
MDA-MB-231 breast carcinoma cell (Fig. S 9 E), and around a non-invasive, round but highly contractile A-431
vulva carcinoma cell (Fig. S 9 B). The aspect ratios of the contractile ellipsoids are chosen to match the measured
cell contours. The measured displacement field around both cells are well reproduced with our constitutive equation
(Fig. S 9 A,D), whereas the linear material model fails to reproduce the long-ranging deformations seen in the
measurements (Fig. S 9 C,F). For the invasive, elongated breast carcinoma cell, we find that the measured data
are best described by an ellipsoid with a uniaxial stress tensor with a magnitude of 289Pa in the direction of the
long cell axis. For the non-invasive, round vulva carcinoma cell, we find the best match with an isotropic stress
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tensor with a magnitude of only 12.7Pa in every direction.
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Figure S 9: Measured and calculated displacements in a collagen matrix around non-invasive A-431 vulva cancer cell (upper
row), and invasive MDA-MB-231 breast cancer cell (lower row). Colors and line density indicate the magnitude of the
matrix displacements. Box size is 200µm. (B,E) Measured matrix displacements from published data [Koch 2012]. (A,D)
Calculated displacements for a non-linear collagen gel around an ellipsoidal cell with dimensions taken from measurements
[Koch 2012]. The contractile stress (12.7 Pa for A-431 cell, 289Pa for MDA-MB-231 cell) was fitted to match the measured
displacements. (C,F) Calculated displacements for a linear material fail to recapitulate the measurements.

Note 9.4 Mechanical anisotropy due to gel geometry

Collagen gels used for cell culture usually have a free top surface. To investigate the effects of this free surface on
the local mechanical properties that cells feel at a certain depth in the gel, we compute the apparent stiffness of the
gel as a function of depth, for a round cell (Fig. S 10 A: diameter 20µm) as well as an ellipsoidal cell (dimensions
50 × 15 × 15µm). The simulated cell culture dish has a width of 800µm. The long axis of the cell is aligned
with the direction of the contractile forces. From the simulations, we extract an apparent gel stiffness, which is
defined as the amount of contractile stress that the cell generates, divided by the resulting relative contraction
of its body. We find that below 200µm, the free surface has no effect on the apparent stiffness. At a depth of
100µm below the gel surface, however, we see that the anisotropy is highly dependent on the shape of the cell
and its orientation relative to the gel surface. We find that the fixed rigid bottom of the dish has no effect on the
cell-encountered stiffness (Fig. S 10). In the case of a linear material instead of a collagen gel, we find that the
apparent stiffness is independent of the depth and the orientation of the the cell.
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Figure S 10: Apparent stiffness anisotropy resulting from a free surface of a collagen gel for a round cell (A: diameter
20µm) as well as an ellipsoidal cell (B: dimensions 50 × 15 × 15µm). Red lines show the response of a linear material,
blue lines the response of a collagen gel. Dashed lines indicate that the cell is contracting horizontally, whereas solid lines
indicates that the cell is contracting vertically. Below a depth of 200µm in the gel, the free surface has no effect. The
distance to the fixed surface has no effect on the apparent matrix stiffness for distances larger than 100µm (depth less
than 700µm).

Note 10 Matrix creep response around a point-like force
To quantify the visco-elastic creep response of the collagen matrix, the displacement of 10 marker beads located
near the magnetic bead are measured during application of a constant point-like force (data from Fig. 3 a, see main
text). The displacements are normalized by their individual final displacement after 300 s. We find that after 3 s,
the matrix displacements have reached 97 % of the final displacements, indicating predominantly elastic material
properties. As we measure the matrix deformations around cells 30min after force relaxation, visco-elastic creep
can be neglected.
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Figure S 11: Displacement of marker beads around a point-like force as a function of the duration of force application. The
displacements of the 10 individual beads are normalized by the maximum displacement at 300 s after force application.

18

Nature Methods: doi:10.1038/nmeth.3685



Note 11 Test of unconstrained force reconstruction with known point-
like force

Applied Force [nN]

Fi
tte

d 
Fo

rc
e 

[n
N

]

0 20 40
0

20

40

α [pN2/µm2]

Fi
tte

d 
Fo

rc
e 

[n
N

]

10
-4

10
-3

10
-2

10
-1

10
00.1

10

1.5

0

µ
m

1.5

0

µ
m

0.15

0

pN
µm3

Measured Displacements Fitted Displacements Force DensityA B C

D E F

100µm

Projected Force 
Density

X-Position [µm]

100µm 100µm

0-100 100

1

Figure S 12: Experimental validation of the unconstrained force reconstruction method. (A) Measured displacement around
a single point-like force on the surface of a collagen gel. (B) Regularized displacements for the same measurement. (C) Force
density calculated from the regularized displacements shown in (B). (D) Reconstructed vs. applied force. Horizontal error
bars indicate the error in the applied force due to variations in bead size. (E) The reconstructed force amplitude depends only
weakly on the choice of the regularization parameter α for values above ∼ 0.3 pN2/µm2. Individual measurements in gray,
average from 13 measurements in red. Dashed line indicates the value of α = 0.003 pN2/µm2 chosen for all subsequent
calculations. (F) Reconstructed force density for each bead is projected onto the x-axis (gray lines). The average force
density is shown in red. Zero corresponds to the position of the magnetic bead before force application. Reconstructed
forces from a point-like source are systematically shifted to the left (31µm against the direction of force application) and
are spread out with a standard deviation of 29 µm.

To test our method of unconstrained force reconstruction and to find the appropriate value for the regularization
parameter α, we apply a force of 20nN to a magnetic bead and reconstruct the force from the matrix displacements
measured around the bead. This time, we do not constrain the spatial distribution of the force to a point. We find
that the algorithm reconstructs a force distribution with a Gaussian shape of 29 µm width (Fig. S 12 C) and a
center of mass that is scattered with a standard deviation of 5 µm between individual measurements. However, the
force center is systematically shifted by 31µm in the opposite direction of the applied force (to the left in Fig. S 12
D). This blurring and shifting of the reconstructed force results from the finite size of the elements, measurement
noise, numerical regularization, and material inhomogeneities that are not captured by the continuous material
model. Nonetheless, the method correctly reconstructs the force magnitude with an error of less than 1 % on
average and a standard deviation of 30 % between individual measurements (Fig. S 12 F). Because the optimal
value for the regularization parameter α is unknown, we repeat this computation for multiple values of α. We
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find that the total force (vector sum of all forces around the bead) depends only little on α for values below
0.3 pN2/µm2 Above this value, the force penalty becomes too high and the total force decays (Fig. S 12 E).
Below a value of 0.0003 pN2/µm2, noise forces in the bulk of the gel volume begin to appear (Fig. S 16). We
choose a value of 0.003 pN2/µm2 for all subsequent measurements.

Note 12 Measurement of displacements from confocal reflection stacks
The z-drive of confocal microscopes has a uncertainty in the z-position due to mechanical effects and thermal
drift. Alignment of the two image stacks (recorded before (stack1) and after (stack2) cell force relaxation) is
used to remove the z-dependent drift and to reduce the impact of z-drive imprecision. The alignment algorithm is
based on a rigid registration method. It replaces every image of stack2 by a weighted average of images in stack2
that correlate best with the corresponding image of stack1. First, the cross-correlation between a given image im
of stack2 with the corresponding image of stack1 is computed. Next, im is shifted by voxel-increments until its
cross-correlation with stack1 reaches a maximum. Every voxel of im is then replaced by the average of the stack2
voxel with the highest cross-correlation and its 26 neighboring voxels, weighted by their respective cross-correlation
coefficient. This procedure is repeated for all images of stack2. Apart from effectively removing stage drift and
z-drive imprecision, this procedure results in a slight low-pass filtering of the images (Fig. S 13) that stabilizes the
subsequent step of particle image velocimentry for computing the gel displacement field.

a a

b

b

cell

Figure S 13: (Left) Overlay of confocal reflection images of collagen fibers before (red) and after (green) the cell forces
were relaxed using cytochalasin D. (Right) Enlarged section of two regions with small (a) and large (b) deformations due
to cell forces. In region b, the stressed collagen fibers (red) are displaced towards the cell by approximately 1.5µm relative
to the relaxed fibers (green) .

In order to quantify the accuracy of the displacements measured from confocal reflection stacks, we twice recorded
a section of a collagen gel without cells. The true displacement field between both stacks is zero at every point.
Therefore, non-zero displacements characterize the error of the method. For a section size of 123 voxels, each voxel
with dimensions0.72µm 3, we find errors of σ ∼ 0.06µm in the x, y and z-direction (Fig S 14 A-C). This error
depends only weakly on the distance of the confocal z-sections between 0.35µm and 1.4µm (x-y voxel dimensions
of 0.72µm) (Fig. S 14 D). The error is approximately constant for section sizes between 53 and 323 voxels (Fig.
S 14 E).
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Figure S 14: Error of displacement measurements. (A-C) Error distribution in x (A), y (B) and z (C) direction, measured
from two collagen stacks that were recorded consecutively with no cells present. The accuracy of the measured displacements
is nearly isotropic. (D) Error in z-direction vs. distance of the confocal z-sections (slice thickness). (E) Error in x/y-direction
vs. section size.

Note 13 Analysis of cellular forces
From the unconstrained force reconstruction algorithm, the cellular force field is retrieved as a set nodal forces. As
a first step to quantify the cellular forces, the epicenter of the force field ~a is computed. A unique characteristic of
the force epicenter is that most forces are pointing directly towards it. Therefore, the epicenter is the point where
the norm of the cross-products of the nodal forces with the vectors from their respective nodes to that point is a
minimum:

Q =
∑
o

∣∣∣ ~fn × (~rn − ~a)
∣∣∣2 (23)

n ∈ {nodes}

To compute the ~a that minimizes Q, we reexpress Q using the Binet–Cauchy identity [ButlerPC].

Q =
∑
n

∣∣∣ ~fn × ~rn∣∣∣2 − 2 ·
(
~fn × ~rn

)
·
(
~fn × ~a

)
+
∣∣∣ ~fn × ~a∣∣∣2

=
∣∣∣ ~fn∣∣∣2 · | ~rn|2 − ( ~fn · ~rn)2

− 2 ·
(∣∣∣ ~fn∣∣∣2 ~rn · ~a− ( ~fn · ~rn)( ~fn · ~a))+

∣∣∣ ~fn∣∣∣2 |~a|2 − ( ~fn · ~a)2

In component notation using the Einstein summation convention, we see that Q is a quadratic function of the
epicenter coordinates ~a,
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Q =
∑
n

fnifnirnjrnj − fnifnjrnirnj − 2 · (fnifnirnj − fnirnifnj) · aj

+ ai · (fnkfnkδij − fnifnj) · aj
i, j, k ∈ {x, y , z}

where δij is the Kronecker delta. Thus we write

Q = const+
∑
n

−2 · (fnifnirnj − fnirnifnj) · aj + ai · (fnkfnkδij − fnifnj) · aj

= const+
∑
n

−2Bjaj + aiAijaj

where

Bi =
∑
n

fnifnirnj − fnirnifnj

and

Aij =
∑
n

fnkfnkδij − fnifnj

The minimum of Q can be found by setting its derivative with respect to ai to zero (hence the constant term in
Q (independent of ai) is irrelevant). This gives

∂Q

∂ai
= 0 = −2Bi +Aikak + ajAji

As the matrix A is symmetric, if follows thatA · ~a = ~B , and the coordinates of the force epicenter are therefore

~a = A−1 · ~B

We define the contractility of a cell as the sum of the forces that point towards the epicenter:

Ctot =
∑
n

< ~fn · (~rn − ~a) >
|~rn − ~a|

To quantify the geometry of the cellular force field, we separate the contractile forces of every node into the
force contributions from three principal components of an orthogonal coordinate system { ~emax, ~emid, ~emin} that
is aligned with the force field of the cell. The contractility can thus be separated into three components Ctot =
Cmax +Cmid +Cmin. ~emax is oriented such that the corresponding contractility Cmax is highest. ~emax is found
by testing a set of 7000 isotropically distributed unit vectors. In the same way, ~emin is found as the axis of least
contractility. ~emid is computed as ~emid = ~emax × ~emin. The polarity P of the force field is given by

P = Cmax/Ctot (24)

The polarity therefore quantifies the fraction of the contractile force that is oriented in a single direction.
In order calculate to what extent the cell is affected by the strain stiffening of the collagen matrix, we consider
how much work the cell has to invest to deform the collagen by an infinitesimal extra amount ε. Because ε is
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small, we use the Taylor series expansion of the total energy (Eq. S 21).

E(~u+ ε · ~u) = Eu + ε · fuu+ ε2

2 · u ·Ku · u

The apparent stiffness of the collagen gel “seen” by the cell is given by the second derivative of the total energy
by ε.

kcell = ∂2E(~u+ ε · ~u)
∂ε2

= u ·Ku · u

We compute kcell for collagen where we either consider the full non-linear stress-strain relationship, or where we
consider only the buckling behavior during compression but not the strain-stiffening behavior during extension
(material parameter ds → ∞). The ratio of both stiffness values quantifies the additional stiffness that the cell
encounters because of strain stiffening, and was estimated to be 3.2±0.5% (mean ± se) for n = 38 MDA-MB-231
breast carcinoma cells (see main text).
The principal stretch, principal stress and principal stiffness of the collagen matrix (see Fig. 5, main text) are
calculated from the reconstructed deformation fields as follows. For every tetrahedron T , the direction of the
highest positive stretch (~q) is determined. The associated stress can then be calculated from the stress tensor
inside the tetrahedron (Eq. 3, main text) as

pprin,T =
∑
i,j

NTij qiqj

The principal stiffness is computed as the derivative of the principal stress with respect to the deformation in the
direction of the principal stretch, utilizing the stiffness tensor K (Eq. S 1)

kprin,T =
∑
i,j,k,l

KTijkl qiqjqkql

For an isotropic linear material, the principal stiffness is (Eq. S 2)

kprin = Y · (1− ν)
(1 + ν)(1− 2ν)

Where Y is the Young’s modulus and ν is the Poisson’s ratio.

Note 14 Test of force reconstruction algorithm with synthetic data
We test the robustness of the unconstrained force reconstruction method using synthetic data, for which measure-
ment noise and signal level (contractility of a cell) are precisely controlled. The calculated deformations around a
polarized contracting ellipsoidal cell (dimensions 15 x 15 x 50µm) as discussed in section 6.2 are used as a signal.
The contractility of the cell is chosen to be 0nN , 5nN , 30nN or 100nN , respectively. The displacement field
is interpolated onto a regular mesh (grid constant = 15µm). To account for measurement error, Gaussian noise
of varying amplitudes ranging from 0− 500nm is added to the displacements of each node. Fig. S 15 shows the
reconstructed total contractility as a function of the regularization parameter α for different true contractilities
and different noise levels. The total reconstructed contractility is largely independent of α for α-values above
3 · 10−4 µm2

pN2 and below 10−2 µm2
pN2 . For higher values of α, the contractility approaches zero as cellular forces are

excessively penalized. For intermediate α-values, the reconstruction algorithm slightly underestimates the true
contractility of the cell. In addition, higher noise levels lead to a larger underestimation of the true contractility,
but even for the highest noise level of 500nm, the error remains below 15nN . For a noise level of 60nm and

23

Nature Methods: doi:10.1038/nmeth.3685



α-value of 3 · 10−3 µm2
pN2 as in our measurements, the relative error is negligible. The underestimation of large

contractilities in the absence of noise (10 % for a contractility of 100nN) arises because the deformation field
around the ellipsoidal cell is calculated from the known surface tractions, whereas the reconstruction algorithm
assumes a continuous force field. As further validation of the algorithm we repeat this procedure also for different
mesh sizes. We find no appreciable differences in the reconstructed contractility. For a true contractility of 30nN
and a noise level of 100nm, the reconstructed contractility is 31.3nN for a mesh size of 7.5µm, 29.1nN for a
mesh size of 10µm and 29.9nN for a mesh size of 15µm.

Figure S 15: (A) Cut-open view of the finite element mesh around a contractile cell. The cell is modeled as an ellipsoidal
hole inside a continuous material. The cell generates traction forces (red arrows) at its poles with a total contractility
of 30nN . The matrix reacts to these forces through displacements (blue arrows). (B) The matrix displacements in
(A) are interpolated onto a regular grid. (C) To account for measurement error, Gaussian noise (300nm) is added to
the displacements. (C) The cellular forces (red arrows) are reconstructed by unconstrained force reconstruction. The
reconstructed total contractility is 28.7nN . Scalebar is 50µm.
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Figure S 16: Influence of the regularization parameter α on total reconstructed contractility for different true contractilities
(0nN , 5nN , 30nN and 100nN) and different noise levels (corresponding to line color).

As described in the main text, we find that the reconstructed forces are systematically shifted away from the point
of force application, both for point-like applied forces as well as cellular forces. To test whether this is due to the
unconstrained force reconstruction algorithm or due to the inhomogeneity of the material, which is not captured
by our material model, we analyze this shift in simulated data. The material model for the simulation is the same
as for the reconstruction and does not comprise material inhomogeneity. The contractility of the simulated cell
is 30nN . The simulated displacements are interpolated onto a regular mesh with a mesh size of 7.5µm. Then
100nm Gaussian noise is added to the displacements of each node before the unconstrained force reconstruction
algorithm is used to reconstruct the cellular forces from these displacements. We integrate the resulting force
density along the axes perpendicular to the cell orientation. In the resulting plot we see that the reconstructed
force maxima remain close to the cell surface (Fig S 17). This points towards the neglected material inhomogeneity
as the main reason for the systematic shift of the reconstructed forces.
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Figure S 17: (left) Force density plot of reconstructed forces (right) Force density (red) reconstructed from simulated data
projected along the axis of cell orientation. The force maxima are not notably shifted away from the cell (dashed).

As with all force microscopy methods, the sensitivity depends foremost on the resolution and accuracy of the
measured displacement field. Fig S 18 shows the erroneously reconstructed contractility versus the displacement
noise level using the concentration-dependent material parameters for collagen gels with concentrations of 0.6, 1.2
and 2.4mg/ml. For the MDA-MB-231 carcinoma cells investigated in our study (contractility ≈ 40nN) and the
noise in the displacements that we achieve with our confocal microscope (60nm rms), the relative error is below
5 %, and the detection limit for the total cellular contractilities is ∼ 2nN . We also analyze the local error in the
reconstructed force density as a function of the measurement noise for different collagen concentrations. We find
that the reconstructed error remains below 10−5pN/µm3. This is several orders of magnitude below typical values
of ∼ 10−1pN/µm3 that we measure for cells.
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Figure S 18: Contractility background noise (left) and background in local force density (right) for different collagen
concentrations (0.6mg/ml in blue, 1.2mg/ml in green and 2.4mg/ml in red) versus noise level of measured displacements,
in absence of true cellular forces.

Note 15 Robustness of unconstrained force reconstruction tested on
real data

To test the robustness of the unconstrained force reconstruction method on a dataset of a contractile breast
carcinoma cell, we delete the measured displacement information on a fraction of the nodes and let the algorithm
reconstruct the contractile force. This is implemented by altering the P matrix (see method description in the
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main text) that flags valid displacement entries. We find that up to 75 % of the displacement information can
be deleted without appreciable deviations of the reconstructed total contractility. When more than 75 % of the
displacement information is deleted, however, the algorithm can no longer separate signal from noise, and the
reconstructed total contractility decays.

Figure S 19: Total reconstructed contractility vs. fraction of nodes without displacement information.

Note 16 Computation time of unconstrained force reconstruction soft-
ware depending on mesh density

The computation time of the algorithm depends on the grid constant of the finite element mesh. For values
between 5µm and 20µm we find that the computation time scales linearly with the number of mesh points
and therefore with the grid constant to the −3rd power. For a grid constant of 7.5µm as used here, the total
computation time is ∼ 3h running on a single Pentium E6500 CPU core. This computation time includes the
reconstruction of the displacement field from confocal reflection data. On a more modern Intel core i5-3470 CPU
the computation time is only 53min running on a single core at a grid constant of 7.5µm.

27

Nature Methods: doi:10.1038/nmeth.3685



Grid Constant

C
om

pu
ta

tio
n 

T
im

e

5µm 10µm 20µm 40µm

5min

1h

12h

~ N0

~ N1 ~ 1/g3

~ N2

N: Number of Mesh Points

g: Grid Constant

Figure S 20: Total computation time vs. grid constant of the finite element mesh. Data are shown in blue. The fit (red) is
a second order polynomial in the number of mesh points (N). The green lines correspond to the 3 terms of the polynomial.
In the relevant regime between 5µm and 20µm, the computation time scales approximately linearly with the number of
mesh points.

Note 17 Comparison of constrained and unconstrained reconstruction
of cell forces

In the main text, we compare constrained and unconstrained force reconstruction for the same data set of matrix
displacements around a point-like force applied to the surface of a collagen gel. There we find that the constrained
force reconstruction has a slightly higher accuracy in the localization of forces, whereas the unconstrained force
reconstruction has a higher accuracy in the force magnitude. To compare force magnitude and localization accuracy
of the unconstrained and constrained force reconstruction algorithm, when measuring cells, we record the matrix
displacement field around 15 HT1080 cells stably expressing TagRFP inside a 1.2mg/ml collagen gel. From the
fluorescence stack, we extract the points of the finite element mesh with a distance to the cell of less than half a
mesh size (3.75µm). For these points, we set the force penalty Aii to 0 and for all other points to 0.003 pN2/µm2,
instead of letting the algorithm find the values of Aii through the iterative approach described in the main text.
Thereby we constrain the cellular forces to the cell surface. We confirm that the reconstructed cell forces only
appear on the cell surface (Fig. S 21 E). The displacement field that we fit using the constrained algorithm, however,
overestimates the measured matrix displacements or the displacements fitted with the unconstrained method, with
maximum values that appear closer to the cell (Fig. S 21). The reconstructed contractilities, however, deviate
not as strongly (69 ± 15nN for the constrained and 63 ± 13nN for the unconstrained case (mean±se of n=15
cells)) as the differences in the fitted displacement fields would suggest. We find also no significant differences
for the reconstructed cell polarity (0.56 ± 0.11 for the constrained and 0.42 ± 0.07 for the unconstrained case
(mean±se of n=15 cells)). We see this as confirmation that the unconstrained force reconstruction is not inferior
to a constrained method for computing total contractility or force polarity.
NEW NEW NEW
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Figure S 21: Constrained and unconstrained reconstruction of cellular forces. (A) Measured displacement field around
HT1080 cell stably expressing TagRFP (shown in gray). (B) Displacement field fitted using unconstrained force reconsutrc-
tion. (C) Force density obtained from unconstrained force reconstruction. (D) Displacement field fitted while constraining
the forces to the cell surface. The maxmimum displacements are higher and appear closer to the cell when compared to
(A) and (B). (E) Force density obtained from constrained force reconstruction. Cell forces only appear on the cell surface.
The force density therefore has higher maximum values. Scalebar is 100µm.

Note 18 Influence of mesh size and choice of α-value on unconstrained
force reconstruction

For 3 different mesh sizes (5µm, 7.5µm and 10µm), we calculate the force density around an MDA-MB-231
cell embedded in a 1.2mg/ml collagen gel using the unconstrained force reconstruction method with a range
of values for the regularization parameter α between 10−4 nN2/µm2 and 1nN2/µm2. For all mesh sizes, the
contractility decreases with higher values of α. For an intermediate range of α-values, however, the contractility
is nearly constant. We observe that both, this α-range and the corresponding contractility shift towards higher
values with decreasing mesh size (Fig. S 22 A).
To select the appropriate α-value for the chosen mesh size, we analyze the reconstructed force field around the
cell for different α-values. If α is chosen too low, noise forces appear everywhere; if α is too high, the cellular
forces are smeared out also towards regions far outside of the cell. To quantify this effect, we plot the force density
as a function of the distance to the cell surface and compute the first moment, which gives the average distance
between the force vectors and the cell surface. For all three mesh sizes, the average force distance to the cell
surface shows a minimum (Fig. S 22 B). This minimum corresponds to a reconstructed force field that neither
is excessively smeared out nor excessively noisy, and thus represents an optimum. The optimum α shifts towards
lower values with increasing mesh size. Fig S 22 C-E shows the reconstructed force field for three different mesh
sizes and α-values as indicated by the dashed lines in Fig S 22 A+B.
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Figure S 22: (A) Cell contractility as a function of the regularization parameter α for three different mesh sizes (5µm in
blue, 7.5µm in green and 10µm in red). In all cases, the contractility decreases with higher values of α. For intermediate
values of α, the contractility is nearly constant. (B) Weighted average distance of the reconstructed force vectors to the cell
surface as a function of the regularization parameter α for the same mesh sizes as shown in (A). In all cases, the distance
shows an minimum for intermediate values of α that shifts towards lower α-values for increasing mesh sizes. (C,D,E)
Reconstructed force field for three different mesh sizes and α-values as indicated by the dashed lines in (A) and (B).

Note 19 3-D force fields around MDA-MB-231 cells
In the following we present the individual force fields around all measured MDA-MB-231 breast carcinoma cells
(n=38) in collagen gels with a collagen concentration of 1.2mg/ml.
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Figure S 23: 3-D force density plots around different MDA-MB-231 breast carcinoma cells. Arrow density and color
corresponds to the local force magnitude. For colorbar, see Fig. S 24. Total displayed volume is a cubic box with edge
length of 200µm . The bottom face of the displayed box shows a brightfield z-projection of the cell.
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Figure S 24: For caption see Fig. S 23
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Note 20 Lagtime dependent cross-correlations of cell shape, motility
and contractility

As described in the main text, we simultaneously measure the time course of contractility, cell elongation, migration
persistence and migration activity (Fig. 6, main text). The following figure displays the full lag time depend cross-
correlation matrix. The correlation functions were computed for every cell separately and then normalized by the
variance over all cells and time-points. Therefore, the auto-correlation functions for zero lag can deviate from
unity for individual cells, but not on average. The error values were calculated by bootstrapping.
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Figure S 25: Lagtime dependent cross-correlation matrix of the aspect ratio, contractility, migratory activity, migratory
persistence and protrusive activity. All x-axes display the lagtime in minutes. A star indicates that the correlation is
significant (p < 0.05) for zero lag.
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Note 21 Influence of collagen concentration on cell contractility
In the main text, we describe that the cells are less elongated in the stiffer and denser collagen gels. To test
whether impeded cell elongation is the reason why the cells are not able to contract more strongly in stiffer gels,
as cells plated on stiffer 2-D gels normally do [Trichet2012], we analyze the sub-population of cells that have an
aspect ratio of 2.0 or higher. The aspect ratio of the cells was determined from brightfield projections of the
cells. We find that the elongated cells grown in collagen gels with a concentration of 1.2mg/ml indeed show a
significantly increased contractility compared a sub-population of similarly elongated cells grown in collagen gels
with a concentration of 0.6mg/ml. For cells grown in collagen gels with a collagen concentration of 2.4mg/ml,
we are not able to resolve differences do the low number of cells that have a sufficiently elongated shape.
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Figure S 26: Cell contractility of elongated cells measured in collagen gels with different collagen concentration. Only cells
with an aspect larger than 2.0 were included in this analysis.
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